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V1. The relations between polyhedral
point-group/subgroup symmetries

Mark Pinsky*?, Kenny B. Lipkowitz¢ and David Avnir®

8ngtitute of Chemistry and The Lise Meitner Minerva Center for Computational Quantum Chemistry,
The Hebrew University of Jerusalem, Jerusalem 91904, |srael
E-mail: david@chem.ch.huji.ac.il
b | nstitute of Earth Sci ences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
€ Department of Chemistry, Indiana University-Purdue University-Indianapolis (IUPUI), Indianapolis,
IN 46202-3274, USA

Received 24 May 2001

We extend our analysis of the symmetry content of the classical polyhedra [1] to the analy-
sis of the degree of polyhedral subgroup symmetries. The quantitative levels of the hierarchical
polyhedral symmetries series o},OD4n and Doy, of hexacoordinated structures, as well as
the relations between them, serve as an example. A distinction is made between two types of
measures: quantitative evaluation of the degree of symmetry, and quantitative evaluation of
the degree of content of a reference shape.
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1. Background

In the past several years we have developed a general methodology for measur-
ing, on a quantitative scale, the degree of symmetry (and chirality) content in a given
(distorted) structure [1,2]. A number of novel-type correlations between symmetry or
chirality and molecular properties have been consequently revealed [3—-15]. The Con-
tinuous Symmetry Measure (CSM), which seeks the minimal distance to the desired
perfect symmetry, has been backed both by a general algorithm [16] and by several spe-
cific algorithms and computational tools [2] tailored for specific needs. Of relevance
here is the symmetry measurement tool developed for the family of the classical poly-
hedral symmetries [1]. Specifically, it allows the determination of the degree of the
highest polyhedral symmetry, and more generally it allows the quantitative evaluation
of the content of any given shape, symmetric or not, in any structure. Here we develop
further the analysis of polyhedral symmetries by addressing two issues. First, whereas
in [1] we described the evaluation of the highest possible symmetry, here we develop
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the methodology for evaluating subgroups symmetries content. And second, we clarify
the distinction between measuring the symmetry content in cases where the specifics
of the reference symmetric structure are unknown, and cases where such a structure is
predetermined or preselected. Since the family of molecular polyhedra which are char-
acterized by symmetry subgroups is by far larger then the family of polyhedral molecules
characterized by the highest possible symmetry, the following is a necessary addition to
the arsenal of programs devised to determine the symmetry and chirality contents on a
continuous level. In particular, the measurement of the degree of subgroup symmetries
provides an interesting mean of analyzing the hierarchical relations between them on a
guantitative level. We recall that a common practice in structural analysis is to plot the
relation between specific geometric parameters, say, changes in bond lengths as a func-
tion of angle changes [17] and references therein. The quantitative symmetry approach
provides a new type of global-parameter analysis: how do values of relevant symmetries
of a structure relate to each other. A detailed study of the relation between the degree of
symmetries which are not a subgroups series — the degree of tetrahedrigign{rof

D4n square planarity in tetracoordinated complexes —was published recently [6].

To demonstrate the methodology and the relations between a hierarchical set of
polyhedral symmetries, we have selected to concentrate on the serigdif,@nd Doy,
symmetry content of hexacoordinated structures. In addition to the central role of this
coordination, this selection continues thg-&xacoordination analysis in [1] and the
recent detailed analyses [8,9] of the quantitative degree of chirality of a large library of
hexacoordinated compounds the structures of which lie on the Bajtawist route.

2. Thepolyhedral-symmetry measurement methodology: Subgroupsand
reference shapes

2.1. Thedistance to symmetry

According to the CSM methodology [1,2,16] (for other approaches, see [18-20],
given a (distorted) structure composed Mfvertices (either the ligands only, or the
ligands and the central atom) the coordinates of which@rdék = 1,2,..., N), one
searches for the vertex coordinates of the nearest perfectly G-symmetric object (G being
a specific symmetry groupﬁk. Once at hand, the symmetry measure is defined as

e
S 110k — Qol?

where P is the set of coordinates of the searched reference shape before minimization,
Qo is the coordinate vector of the center of mass of the investigated structure,

S(G) = min 100, (1)

1 N
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and were the denominator is a mean square size normalization factor. It was proven else-
where [1,16] that the bounds are 180S > 0: if a structure has the desired G-symmetry,
S(G) = 0 and the symmetry measure increases as it departs from G-symmetry, reaching
maximal value (not necessarily 100). A{G) values, regardless of G or of the structure
are on the same scale and therefore comparable. One can compare the degree of, say,
perfect octahedricity (Pness),D4n-ness, Dyr-ness and By-ness of various distorted
hexacoordinated complexes; one can compare thenBss of complexes with differ-
ent coordination numbers; or one can compare different symmetry contents of different
complexes.

The main computational problem is to find the nearest structure that has the desired
symmetry, namely, how to minimize equation (1) to get the sy ofSeveral methods,
both general and problem-specific, have been constructed towards this goal [1,2,16]. We
continue here the development of the method described in [1], which uses for the min-
imization procedure of equation (1) an input structure which has the desired symmetry
but which is not of minimal distance to the distorted one. Tiristotype symmetric
structure, the coordinates of which argy,, undergoes minimizations which transform
it to the desired set of vertices, which is the closest to the dist@pied-or instance, if
one wishes to determine the degree q@f-Dess (or tetragonality [21,22]) of a distorted
hexacoordinated compound, then the prototype symmetric structure is a square-based
octahedron with some arbitragyelongation. Such an arbitrary,pPsquare bipyramid
(located atPy;, scaled to an r.m.s. size of 1 and placed at the origin) is used as a starting
input for the minimization procedures. These minimizations constitute of the orientation,
the scale and the-elongation, i.e., the height-to-base ratib/b. It has been shown [1]
that in terms of the prototype symmetric structuRg,, minimization of equation (1)
leads to

SR P

N YL 1012

Here, R is a rotation (3x 3) matrix (and the upper index, t, shows the transposition of
the matrix or vector).

S(G) = [1 -

2.2. Thedistance to a predetermined shape

Specific structural-parameter minimizations such asztieéongation/contraction
are not needed for the five regular Platonic polyhedra, the shapes of which are uniquely
defined. Another useful case where specific structural minimizations are not needed is
when the shape of the prototype structure is decided agwiori [23]. Consider again
determining S(D4n) of a hexacoordinated structure. An available option is to make
ana priori decision on what is the suitable or desired specific reference shape of the

1 Translation needs not be minimized if the center of masse, and Pg; coincide. Minimization over all
possible vertex-labeling is needed, but can be avoided if the correspondence between the Woasets (
Por) is given (which in most instances can be the case). Other minimizations may be needed, as dictated
by specific cases.
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square bipyramid. We term this shape tddeal reference shape (i-rs), which in our

case is an ideal square bipyramid (i-sbp). One can decide for instance that ideality
is reflected by the-elongation with a height to base ratib /) of 1. In this case

one determines naf(Dyy) but S(i-sbp), using the shape of the i-sbp as a prototype
structure. Of course, the symmetry of that nearest ideal structurg,isDwell, but
S(D4n) < S(i-sbp) because a generalfbipyramid can have any/b ratio and, there-

fore, is usually closer than the ideal one. Generally, since more than one definition of
ideality is possible, the resultingy(i-rs) (but notS(G)) will depend on the selected de-
finition;? and S(i-rs) will be < S(G), if the i-rs is a specific member of a family of the
G-symmetric structures.

To summarize, the CSM methodology offers therefore two different options: either
to determine purely theymmetry content by searching for the nearest specific structure
which carries the desired symmetry; or, it can function sisape-content measure where
the distance to a specific, preselected prototype structure is searched. In fact, the prese-
lected structure needs not be symmetric at all, and from that point of view, equation (3)
is a general shape-content measure. Both optional applications of the CSM methodology
are of use and will be demonstrated below.

3. Oy, D4nand Doy symmetry measures in hexacoordination and relations
between them

3.1. The measurement of Dy,

In [1] we answered the question, what is the degree of perfecteSs of a distorted
hexacoordinated structure, defining perfectness after Plato as having all edges of equal
length. Specifically, we analyzed there the tetragonal distortiop te O4, — because of
its central role in removing Edegeneracies [24] and asked how mughn@ss is there
in Dy, structures. Here we proceed down the hierarchy of symmetry, and ask a different
guestion, namely, what is the degree of the symmetry of a distorted hexacoordinated
structure with respect to a subgroup gfONhile we shall concentrate on the evaluation
of the degree of -ness (or tetragonality) and,pness, the following treatment is
general in its principles and can be easily adapted for othesytnmetry subgroups
down to G, for octacoordinated subgroups of (®he cube), and in fact, for the measure
of any polyhedral symmetry subgroup.

While for measuring the degree of octahedricity one has in hand, as explained
above, the specific relevant prototype shape (figure 1 with a square dase9q0°)
and with height to base edge length ratigK) of 2-/?), for the determination of the
Dan-ness degree one needs to minimize oveh Al values of the square based bipyra-
mid. As an example for a low symmetry hexacoordinated structure for which we wish to

2Taking another example from thesgfullerene and its distorted anions, one can either detersihg
for which the hexagon/pentagon edge ratio should be minimized; or one may wish to take the structure
of Cgo-fullerene as the idea},Iprototype and then the edge ratio is an input. The latter is what was done
in [1], where the distinction betweestl,) and S(Cgo-fullerene) was not clear.
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Figure 1. The parameters of the bipyramid used in this report. The base @antjle base edge size, and
the height/.

determineS(Dgp), let us consider the family of §3-hexacoordinated bipyramids, char-
acterized by a rhombus base of various has@gles, maintaining thie/b = 2-/2 ratio
(figure 1). The evaluation a§(D4p) of a Dyp-bipyramid belonging to this family, say, a
specific one withw = 60°, is carried out as follows:

1. The coordinates of the center of mass of the startingdatahedron (figure 1,
a = 6() are calculated and the polyhedron is placed at the origin of Carte-
sian coordinates (i.e., @ = 0, equation (2)). The orientation and size are
arbitrary (or selected for convenience of computation; in this example, for in-
stance, the rhomboid base was in #he plane and the height coincides with
the z-direction).

2. The prototype shape, ajPsquare bipyramid with an arbitrary/b ratio is
placed at the origin of the coordinates as well (the sglge= 0) with either
an arbitrary orientation or a conveniently selected one (e.g., height coincides
with the z-direction), and its r.m.s. size is scaled to 1. The vertex labeling of
{Py, Kk = 1,2,..., N} in this specific example was predetermined. As ex-
plained above, this defines the starting prototype shape, the distance of which
to the coordinates of theJp-bipyramid is to be minimized.
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Figure 2. The degree of /3 symmetry in a Bp-bipyramid as a function of the base angléfigure 1).

3. The transformation of the séy in order to yield the desired set §L namely,
the set which is closest tQy, is determined by the various minimizations de-
scribed above and in [1], and by minimizing over th ratio, which is carried
out by changing gradually the prototypéb input.

4. The symmetry-content valug(D4n-square bipyramid), is then calculated from
equation (3), and the coordinates of the nearest symmetric structure are ob-
tained. The nearestpsquare bipyramid is characterized by /afb ratio of
0.732 and thes(Dy4p) value of that specific B, bipyramid is 4.47. Finally we
note that whereas the analyzed structures do not contain, for simplicity, a poly-
hedron center atom, such an atom may be added and the analysis procedure is
the same — see [6-9] for examples.

Let us now proceed to a full analysis of this case. Figure 2 shows the full picture,
namely,S(D4p) as a function oé of the Dop-bipyramid. Fore = 90°, S(Dgy,) is zero, as it
should be, reflecting the fact thapfis a subgroup of k); and therefore, ag decreases,
the shape gets farther from being anBtructure, i.e., itsS(Dy4n) value increases. For
each of thex values of the By-bipyramid, the nearestJpsquare bipyramid is different,
and its shape is characterized by a spedifit value. Figure 3 shows these shapes in
terms ofi /b as a function of§(Dg4y), and, by comparison with figure 2, it is seen that as
a decreases, the nearesipctahedron becomes more elongated.
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Figure 3. The height-to-base ratigs/b) of the Dyp-bipyramids, which are nearest to thebipyramids
of figure 2, as a function of their degree offpsymmetry.

3.2. Quantitative relations between Oy, D4 and D,y sSymmetries

Interesting insight on the relations between the continuous symmetry valugg of D
D4n and G, is obtained by following the minimization @&f/b, which led to figure 2. The
search for the: /b ratio in a perfect Ry-square bipyramid which leads to the minimal
S(Dg4p) value for several By(h/b = 271/2) rhombic bipyramids is shown in figure 4.
Let us analyze, for instance, tlke = 60° curve which searches for the nearest D
to the Do, « = 60° pyramid. From left to right, one sweeps over th& ratio and
determines the (yet non-minimaf)measure, i.e., the distance toaatain D4n-bipyramid
characterized by a specific/b value. The line passes through a minimumgb =
0.732, which characterizes the searched nearggtstbucture, providing the minimal
S(Dapn) value of 4.47. Seen in figure 4 is the full picture behind figure 3 as wella As
decreases, the minim&(Dgyy,) value is shifted to highek /b values; i.e., ag decreases,
the hexacoordinated structure is farther fromg-Bipyramid.

Figure 4 demonstrates the second capability of the CSM methodology. On each of
the curves one has in each point the distance betwasific shapes, i.e., it provided
the content degree of one shape in the another shape. For instance, point (I) on the
o = 60 line is the distance of a )« = 60°, h/b = 2~Y?)-structure to a Qy-structure
characterized by:/b = 0.44; and since, in general, the distance from structure A to
B must be also the distance from B to A, point (I) also determines the degree of the
Don(ae = 60°, h/b = 27%/2) shape in a h(h/b = 0.44)-bipyramid. As explained in
section 2, the CSM methodology also allows one to determine the degree of the con-
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Figure 4. The two faces of the Continuous Symmetry measures approach. On one hand, shown is the search

for the i /b ratio in a perfect Qx-square bipyramid which leads to the mining{D4p) values for several

Don(h/b = 2*1/2) rhombic bipyramids; this is a search &ymmetry content. On the other hand, this figure

also shows how to find the degree of contergpkific shapes: point (1) on thew = 60° line is the distance

of a Dyp(a = 60°, h/b = 2-1/2)-structure to a specific J-structure characterized b = 0.44. And,

suppose that a J(h/b = 1)-bipyramid is defined as the ideal square bipyramid; then the distance of the

Dop(e = 60°, h/b = 2-Y/2)-structure to it is point (Il). The: = 90° line provides information on the
octahedricity levelS(Oy,).

tent of an ideal reference shape. Returning to the example given there suppose that we
have selected af(h/b = 1)-bipyramid representing ideality, then the distance of the
Don(a = 60°, /b = 2Y/?)-structure to that reference shape, namely{tssbp) value,
is point (II) on thea = 60 line (figure 4); and as explained above, it must be that
S(i-sbp) > S(D4p) as is indeed the case (figure 4).

Next let us comment on the relation betwees, D4, and Q,, which becomes ev-
ident from theax = 90C° line of figure 4. This line — like the lowex-lines — searches
for the nearest Ry-octahedron to a B\(h/b = 27Y/?)-bipyramid; buta = 90° intro-
duces yet another meaning here because this spegifibipyramid is in fact a perfect
On-octahedron. This is seen, for instance, in figure 3 where the line reaches the minimal
value of S(D4p) (= S(On)) = 0 ath/b = 272, It follows that thea = 9C° line also
indicates the distance of tetragonally distorted octahedjgl§ipyramids) from perfect
On-ness. In fact, figure 4 provides information 8O;) not only for thea = 90°
line, but for all otherx values. In general§(Oy) of the Don(h/b = 2-Y?)-bipyramids
are theS(D4n) values of the lines in figure 4 d@t/b = 2712, The full picture of
S(Oy) as a function ofx is given in figure 5(a). Comparing it to figure 3(Dan) as
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Figure 5. (a)S(Op) as a function ofx of the Dyp-bipyramids and (b) comparison of ti5¢Op) and S(Dah)
values.

a function ofw) it is seen that, as expected, ti€0;,) values are always larger than
the S(Dg4pn) values reflecting the fact that any (distorted) hexacoordinated structure is
farther from the higher @symmetry than from [ symmetry; and yet the two val-
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Figure 6. The distance between shapes within the same family. Defining a speg{tic-® 60°)-bipyramid
as a target shape, its content within all othepDipyramids is shown, as a function @bf these pyramids.

ues are quite close (figure 5(b)), and it is only at the loweralues — the more dis-
torted Dyp-octahedra — that significant differences between the two measuséS;)

and S(Dg4n) — emerge. This can be understood by recalling that in the higimgle
range, theS(G) value in both cases is close to zero, making the difference between them
small.

Another interesting feature of our methodology is its ability to analyze distances
within members of a family of structures. Continuing with the same example, we
now select the specific Ao = 60°)-bipyramid, define it as our target shape, and
determine the shape content of &(D,n(e = 60°)-bipyramid) in all of the other
D,h-bipyramids. The result, shown in figure 6, is a curve which passes through a min-
imum of zero alw = 6(° (the distance of the target structure to itself), and therefore,
in the interval of 30 < o < 90 there are pairs of different f3-structures, equally
distant within each pair, from the targetilx = 60C°) shape. We have termed struc-
tures of equalS(G) value asisosymmetric;® likewise, structures of equal distance to
a specific reference shape are ternig@shaped structures. Figure 6 can be further
generalized in 3D presentation to all intra-group distances within ghedbnily (not
shown).

3 For this as well as other concepts that have emerged from treating symmetry as a continuous structural
property, see [5,25].
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4, Conclusion

We have demonstrated that the Continuous Symmetry Measures (CSM) method-
ology, which has been used so far mainly for the analysis of the content of specific
symmetries, is also useful in revealing the relation between the quantitative degree of
a point group and its subgroups. In fact, if one wishes to obtain a full profile of the
symmetry characteristics of distorted polyhedral structures, then required are both the
hierarchical-symmetry analyses of the type summarized here, and the analysis of char-
acteristic point groups which are not of subgroup relations. The latter is the topic of a
forthcoming report on the quantitative relation betwegna@d prismatic By, of hexa-
coordinated compounds [26].

An important feature highlighted in this report is the CSM methodology to evaluate
the degree of any one shape in any other one shape, symmetric or not. The consequences
and applications of this generalization go beyond the specific problem solved here, as
it allows one to define ideality without being limited to structures characterized by a
symmetry point group, as the specific chemical problems may require.
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