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We extend our analysis of the symmetry content of the classical polyhedra [1] to the analy-
sis of the degree of polyhedral subgroup symmetries. The quantitative levels of the hierarchical
polyhedral symmetries series of Oh, D4h and D2h of hexacoordinated structures, as well as
the relations between them, serve as an example. A distinction is made between two types of
measures: quantitative evaluation of the degree of symmetry, and quantitative evaluation of
the degree of content of a reference shape.
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1. Background

In the past several years we have developed a general methodology for measur-
ing, on a quantitative scale, the degree of symmetry (and chirality) content in a given
(distorted) structure [1,2]. A number of novel-type correlations between symmetry or
chirality and molecular properties have been consequently revealed [3–15]. The Con-
tinuous Symmetry Measure (CSM), which seeks the minimal distance to the desired
perfect symmetry, has been backed both by a general algorithm [16] and by several spe-
cific algorithms and computational tools [2] tailored for specific needs. Of relevance
here is the symmetry measurement tool developed for the family of the classical poly-
hedral symmetries [1]. Specifically, it allows the determination of the degree of the
highest polyhedral symmetry, and more generally it allows the quantitative evaluation
of the content of any given shape, symmetric or not, in any structure. Here we develop
further the analysis of polyhedral symmetries by addressing two issues. First, whereas
in [1] we described the evaluation of the highest possible symmetry, here we develop
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the methodology for evaluating subgroups symmetries content. And second, we clarify
the distinction between measuring the symmetry content in cases where the specifics
of the reference symmetric structure are unknown, and cases where such a structure is
predetermined or preselected. Since the family of molecular polyhedra which are char-
acterized by symmetry subgroups is by far larger then the family of polyhedral molecules
characterized by the highest possible symmetry, the following is a necessary addition to
the arsenal of programs devised to determine the symmetry and chirality contents on a
continuous level. In particular, the measurement of the degree of subgroup symmetries
provides an interesting mean of analyzing the hierarchical relations between them on a
quantitative level. We recall that a common practice in structural analysis is to plot the
relation between specific geometric parameters, say, changes in bond lengths as a func-
tion of angle changes [17] and references therein. The quantitative symmetry approach
provides a new type of global-parameter analysis: how do values of relevant symmetries
of a structure relate to each other. A detailed study of the relation between the degree of
symmetries which are not a subgroups series – the degree of tetrahedricity (Td) and of
D4h square planarity in tetracoordinated complexes – was published recently [6].

To demonstrate the methodology and the relations between a hierarchical set of
polyhedral symmetries, we have selected to concentrate on the series of Oh, D4h and D2h

symmetry content of hexacoordinated structures. In addition to the central role of this
coordination, this selection continues the Oh-hexacoordination analysis in [1] and the
recent detailed analyses [8,9] of the quantitative degree of chirality of a large library of
hexacoordinated compounds the structures of which lie on the Bailar D3-twist route.

2. The polyhedral-symmetry measurement methodology: Subgroups and
reference shapes

2.1. The distance to symmetry

According to the CSM methodology [1,2,16] (for other approaches, see [18–20],
given a (distorted) structure composed ofN vertices (either the ligands only, or the
ligands and the central atom) the coordinates of which areQk (k = 1,2, . . . , N), one
searches for the vertex coordinates of the nearest perfectly G-symmetric object (G being
a specific symmetry group),̂Pk. Once at hand, the symmetry measure is defined as

S(G) = min

∑N
k=1 |Qk − Pk|2∑N
k=1 |Qk −Q0|2

· 100, (1)

wherePk is the set of coordinates of the searched reference shape before minimization,
Q0 is the coordinate vector of the center of mass of the investigated structure,

Q0 = 1

N

N∑
k=1

Qk, (2)
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and were the denominator is a mean square size normalization factor. It was proven else-
where [1,16] that the bounds are 100� S � 0: if a structure has the desired G-symmetry,
S(G) = 0 and the symmetry measure increases as it departs from G-symmetry, reaching
maximal value (not necessarily 100). AllS(G) values, regardless of G or of the structure
are on the same scale and therefore comparable. One can compare the degree of, say,
perfect octahedricity (Oh-ness),D4h-ness, D2h-ness and D3h-ness of various distorted
hexacoordinated complexes; one can compare the D2h-ness of complexes with differ-
ent coordination numbers; or one can compare different symmetry contents of different
complexes.

The main computational problem is to find the nearest structure that has the desired
symmetry, namely, how to minimize equation (1) to get the set ofP̂k. Several methods,
both general and problem-specific, have been constructed towards this goal [1,2,16]. We
continue here the development of the method described in [1], which uses for the min-
imization procedure of equation (1) an input structure which has the desired symmetry
but which is not of minimal distance to the distorted one. Thisprototype symmetric
structure, the coordinates of which areP0k, undergoes minimizations which transform
it to the desired set of vertices, which is the closest to the distortedQk. For instance, if
one wishes to determine the degree of D4h-ness (or tetragonality [21,22]) of a distorted
hexacoordinated compound, then the prototype symmetric structure is a square-based
octahedron with some arbitraryz-elongation. Such an arbitrary D4h-square bipyramid
(located atP0k, scaled to an r.m.s. size of 1 and placed at the origin) is used as a starting
input for the minimization procedures. These minimizations constitute of the orientation,
the scale and thez-elongation, i.e., the height-to-base ratio,1 h/b. It has been shown [1]
that in terms of the prototype symmetric structure,P0k, minimization of equation (1)
leads to

S(G) =
[
1−

( ∑N
k=1P

t
0kR

tQk

)2

N
∑N

k=1 |Qk|2
]
· 100. (3)

Here,R is a rotation (3× 3) matrix (and the upper index, t, shows the transposition of
the matrix or vector).

2.2. The distance to a predetermined shape

Specific structural-parameter minimizations such as thez-elongation/contraction
are not needed for the five regular Platonic polyhedra, the shapes of which are uniquely
defined. Another useful case where specific structural minimizations are not needed is
when the shape of the prototype structure is decided upona priori [23]. Consider again
determiningS(D4h) of a hexacoordinated structure. An available option is to make
an a priori decision on what is the suitable or desired specific reference shape of the

1 Translation needs not be minimized if the center of masses ofQk andP0k coincide. Minimization over all
possible vertex-labeling is needed, but can be avoided if the correspondence between the two sets (Qk and
P0k) is given (which in most instances can be the case). Other minimizations may be needed, as dictated
by specific cases.
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square bipyramid. We term this shape theideal reference shape (i-rs), which in our
case is an ideal square bipyramid (i-sbp). One can decide for instance that ideality
is reflected by thez-elongation with a height to base ratio (h/b) of 1. In this case
one determines notS(D4h) but S(i-sbp), using the shape of the i-sbp as a prototype
structure. Of course, the symmetry of that nearest ideal structure is D4h as well, but
S(D4h) � S(i-sbp) because a general D4h bipyramid can have anyh/b ratio and, there-
fore, is usually closer than the ideal one. Generally, since more than one definition of
ideality is possible, the resultingS(i-rs) (but notS(G)) will depend on the selected de-
finition;2 andS(i-rs) will be � S(G), if the i-rs is a specific member of a family of the
G-symmetric structures.

To summarize, the CSM methodology offers therefore two different options: either
to determine purely thesymmetry content by searching for the nearest specific structure
which carries the desired symmetry; or, it can function as ashape-content measure where
the distance to a specific, preselected prototype structure is searched. In fact, the prese-
lected structure needs not be symmetric at all, and from that point of view, equation (3)
is a general shape-content measure. Both optional applications of the CSM methodology
are of use and will be demonstrated below.

3. Oh, D4h and D2h symmetry measures in hexacoordination and relations
between them

3.1. The measurement of D4h

In [1] we answered the question, what is the degree of perfect Oh-ness of a distorted
hexacoordinated structure, defining perfectness after Plato as having all edges of equal
length. Specifically, we analyzed there the tetragonal distortion – Oh to D4h – because of
its central role in removing Oh degeneracies [24] and asked how much Oh-ness is there
in D4h structures. Here we proceed down the hierarchy of symmetry, and ask a different
question, namely, what is the degree of the symmetry of a distorted hexacoordinated
structure with respect to a subgroup of Oh? While we shall concentrate on the evaluation
of the degree of D4h-ness (or tetragonality) and D2h-ness, the following treatment is
general in its principles and can be easily adapted for other Oh symmetry subgroups
down to C1, for octacoordinated subgroups of Oh (the cube), and in fact, for the measure
of any polyhedral symmetry subgroup.

While for measuring the degree of octahedricity one has in hand, as explained
above, the specific relevant prototype shape (figure 1 with a square base (α = 90◦)
and with height to base edge length ratio (h/b) of 2−1/2), for the determination of the
D4h-ness degree one needs to minimize over allh/b values of the square based bipyra-
mid. As an example for a low symmetry hexacoordinated structure for which we wish to

2 Taking another example from the C60-fullerene and its distorted anions, one can either determineS(Ih)
for which the hexagon/pentagon edge ratio should be minimized; or one may wish to take the structure
of C60-fullerene as the ideal Ih prototype and then the edge ratio is an input. The latter is what was done
in [1], where the distinction betweenS(Ih) andS(C60-fullerene) was not clear.
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Figure 1. The parameters of the bipyramid used in this report. The base angle,α, the base edge size,b, and
the height,h.

determineS(D4h), let us consider the family of D2h-hexacoordinated bipyramids, char-
acterized by a rhombus base of various baseα angles, maintaining theh/b = 2−1/2 ratio
(figure 1). The evaluation ofS(D4h) of a D2h-bipyramid belonging to this family, say, a
specific one withα = 60◦, is carried out as follows:

1. The coordinates of the center of mass of the starting D2h-octahedron (figure 1,
α = 60◦) are calculated and the polyhedron is placed at the origin of Carte-
sian coordinates (i.e., atQ0 = 0, equation (2)). The orientation and size are
arbitrary (or selected for convenience of computation; in this example, for in-
stance, the rhomboid base was in thex–y plane and the height coincides with
thez-direction).

2. The prototype shape, a D4h-square bipyramid with an arbitraryh/b ratio is
placed at the origin of the coordinates as well (the sameQ0 = 0) with either
an arbitrary orientation or a conveniently selected one (e.g., height coincides
with the z-direction), and its r.m.s. size is scaled to 1. The vertex labeling of
{P0k, k = 1,2, . . . , N} in this specific example was predetermined. As ex-
plained above, this defines the starting prototype shape, the distance of which
to the coordinates of the D2h-bipyramid is to be minimized.
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Figure 2. The degree of D4h symmetry in a D2h-bipyramid as a function of the base angleα (figure 1).

3. The transformation of the setP0k in order to yield the desired set of̂Pk , namely,
the set which is closest toQk, is determined by the various minimizations de-
scribed above and in [1], and by minimizing over theh/b ratio, which is carried
out by changing gradually the prototypeh/b input.

4. The symmetry-content value,S(D4h-square bipyramid), is then calculated from
equation (3), and the coordinates of the nearest symmetric structure are ob-
tained. The nearest D4h-square bipyramid is characterized by anh/b ratio of
0.732 and theS(D4h) value of that specific D2h bipyramid is 4.47. Finally we
note that whereas the analyzed structures do not contain, for simplicity, a poly-
hedron center atom, such an atom may be added and the analysis procedure is
the same – see [6–9] for examples.

Let us now proceed to a full analysis of this case. Figure 2 shows the full picture,
namely,S(D4h) as a function ofα of the D2h-bipyramid. Forα = 90◦, S(D4h) is zero, as it
should be, reflecting the fact that D2h is a subgroup of D4h; and therefore, asα decreases,
the shape gets farther from being a D4h structure, i.e., itsS(D4h) value increases. For
each of theα values of the D2h-bipyramid, the nearest D4h square bipyramid is different,
and its shape is characterized by a specifich/b value. Figure 3 shows these shapes in
terms ofh/b as a function ofS(D4h), and, by comparison with figure 2, it is seen that as
α decreases, the nearest D4h-octahedron becomes more elongated.
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Figure 3. The height-to-base ratios(h/b) of the D4h-bipyramids, which are nearest to the D2h-bipyramids
of figure 2, as a function of their degree of D4h-symmetry.

3.2. Quantitative relations between Oh, D4h and D2h symmetries

Interesting insight on the relations between the continuous symmetry values of D2h,
D4h and Oh is obtained by following the minimization ofh/b, which led to figure 2. The
search for theh/b ratio in a perfect D4h-square bipyramid which leads to the minimal
S(D4h) value for several D2h(h/b = 2−1/2) rhombic bipyramids is shown in figure 4.
Let us analyze, for instance, theα = 60◦ curve which searches for the nearest D4h

to the D2h, α = 60◦ pyramid. From left to right, one sweeps over theh/b ratio and
determines the (yet non-minimal)Smeasure, i.e., the distance to acertain D4h-bipyramid
characterized by a specifich/b value. The line passes through a minimum ath/b =
0.732, which characterizes the searched nearest D4h-structure, providing the minimal
S(D4h) value of 4.47. Seen in figure 4 is the full picture behind figure 3 as well. Asα

decreases, the minimalS(D4h) value is shifted to higherh/b values; i.e., asα decreases,
the hexacoordinated structure is farther from a D4h-bipyramid.

Figure 4 demonstrates the second capability of the CSM methodology. On each of
the curves one has in each point the distance betweenspecific shapes, i.e., it provided
the content degree of one shape in the another shape. For instance, point (I) on the
α = 60◦ line is the distance of a D2h(α = 60◦, h/b = 2−1/2)-structure to a D4h-structure
characterized byh/b = 0.44; and since, in general, the distance from structure A to
B must be also the distance from B to A, point (I) also determines the degree of the
D2h(α = 60◦, h/b = 2−1/2) shape in a D4h(h/b = 0.44)-bipyramid. As explained in
section 2, the CSM methodology also allows one to determine the degree of the con-
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Figure 4. The two faces of the Continuous Symmetry measures approach. On one hand, shown is the search
for theh/b ratio in a perfect D4h-square bipyramid which leads to the minimalS(D4h) values for several
D2h(h/b = 2−1/2) rhombic bipyramids; this is a search forsymmetry content. On the other hand, this figure
also shows how to find the degree of content ofspecific shapes: point (I) on theα = 60◦ line is the distance
of a D2h(α = 60◦, h/b = 2−1/2)-structure to a specific D4h-structure characterized byh/b = 0.44. And,
suppose that a D4h(h/b = 1)-bipyramid is defined as the ideal square bipyramid; then the distance of the
D2h(α = 60◦, h/b = 2−1/2)-structure to it is point (II). Theα = 90◦ line provides information on the

octahedricity level,S(Oh).

tent of an ideal reference shape. Returning to the example given there suppose that we
have selected a D4h(h/b = 1)-bipyramid representing ideality, then the distance of the
D2h(α = 60◦, h/b = 2−1/2)-structure to that reference shape, namely itsS(i-sbp) value,
is point (II) on theα = 60◦ line (figure 4); and as explained above, it must be that
S(i-sbp)� S(D4h) as is indeed the case (figure 4).

Next let us comment on the relation between D2h, D4h and Oh, which becomes ev-
ident from theα = 90◦ line of figure 4. This line – like the lower-α lines – searches
for the nearest D4h-octahedron to a D2h(h/b = 2−1/2)-bipyramid; butα = 90◦ intro-
duces yet another meaning here because this specific D2h-bipyramid is in fact a perfect
Oh-octahedron. This is seen, for instance, in figure 3 where the line reaches the minimal
value ofS(D4h) (= S(Oh)) = 0 ath/b = 2−1/2. It follows that theα = 90◦ line also
indicates the distance of tetragonally distorted octahedra (D4h-bipyramids) from perfect
Oh-ness. In fact, figure 4 provides information onS(Oh) not only for theα = 90◦
line, but for all otherα values. In general,S(Oh) of the D2h(h/b = 2−1/2)-bipyramids
are theS(D4h) values of the lines in figure 4 ath/b = 2−1/2. The full picture of
S(Oh) as a function ofα is given in figure 5(a). Comparing it to figure 2 (S(D4h) as
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Figure 5. (a)S(Oh) as a function ofα of the D2h-bipyramids and (b) comparison of theS(Oh) andS(D4h)
values.

a function ofα) it is seen that, as expected, theS(Oh) values are always larger than
the S(D4h) values reflecting the fact that any (distorted) hexacoordinated structure is
farther from the higher Oh symmetry than from D4h symmetry; and yet the two val-
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Figure 6. The distance between shapes within the same family. Defining a specific D2h(α = 60◦)-bipyramid
as a target shape, its content within all other D2h-bipyramids is shown, as a function ofα of these pyramids.

ues are quite close (figure 5(b)), and it is only at the lowerα values – the more dis-
torted D2h-octahedra – that significant differences between the two measures –S(Oh)
and S(D4h) – emerge. This can be understood by recalling that in the highα angle
range, theS(G) value in both cases is close to zero, making the difference between them
small.

Another interesting feature of our methodology is its ability to analyze distances
within members of a family of structures. Continuing with the same example, we
now select the specific D2h(α = 60◦)-bipyramid, define it as our target shape, and
determine the shape content of anS(D2h(α = 60◦)-bipyramid) in all of the other
D2h-bipyramids. The result, shown in figure 6, is a curve which passes through a min-
imum of zero atα = 60◦ (the distance of the target structure to itself), and therefore,
in the interval of 30◦ � α � 90◦ there are pairs of different D2h-structures, equally
distant within each pair, from the target D2h(α = 60◦) shape. We have termed struc-
tures of equalS(G) value asisosymmetric;3 likewise, structures of equal distance to
a specific reference shape are termediso-shaped structures. Figure 6 can be further
generalized in 3D presentation to all intra-group distances within the D2h-family (not
shown).

3 For this as well as other concepts that have emerged from treating symmetry as a continuous structural
property, see [5,25].
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4. Conclusion

We have demonstrated that the Continuous Symmetry Measures (CSM) method-
ology, which has been used so far mainly for the analysis of the content of specific
symmetries, is also useful in revealing the relation between the quantitative degree of
a point group and its subgroups. In fact, if one wishes to obtain a full profile of the
symmetry characteristics of distorted polyhedral structures, then required are both the
hierarchical-symmetry analyses of the type summarized here, and the analysis of char-
acteristic point groups which are not of subgroup relations. The latter is the topic of a
forthcoming report on the quantitative relation between Oh and prismatic D3h of hexa-
coordinated compounds [26].

An important feature highlighted in this report is the CSM methodology to evaluate
the degree of any one shape in any other one shape, symmetric or not. The consequences
and applications of this generalization go beyond the specific problem solved here, as
it allows one to define ideality without being limited to structures characterized by a
symmetry point group, as the specific chemical problems may require.
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